USN

First Semester M.Tech. Degree Examination, February 2013 Digital Circuits and Logic Design

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. Define the following:
 - i) Threshold element
 - ii) Threshold function
 - iii) Unate function
 - iv) Linearly separable function
 - v) Linear separability.

(05 Marks)

- b. Show that a threshold logic realization of a full-adder requires only two threshold elements (Note: both sum and carryout must be generated). (08 Marks)
- c. Given the switching function: $F(x_1 \ x_2 \ x_3 \ x_4) = \sum_{i=1}^{\infty} (2, 3, 6, 7, 10, 12, 14, 15)$. Find a minimal threshold logic realization. (07 Marks)
- 2 a. Explain preset experiments with an example.

(08 Marks)

- b. Given the fault table of Table Q.2(b), design an adaptive decision tree. Explain the design procedure in detail. (08 Marks)
- c. Write a note on path sensitizing.

(04 Marks)

rable Q.2(b)								
Tasta	Faults >						o/p of fault free circuit	
Tests	\mathbf{f}_0	f_i	f ₂	f ₃	f ₄	f ₅	f_6	free circuit
T ₁						-1	1	0
T_2		1		1		ĺ	13.19	1
- T ₃					1	1	1	. 0
T ₄			1	1				1,
T ₅		1					1	S00
		ī		1			1	1

3 a. Define Boolean difference of a function.

(02 Marks)

b. Apply Boolean difference method to test the fault at x_3 for s-a-0 and s-a-1. (08 Marks)

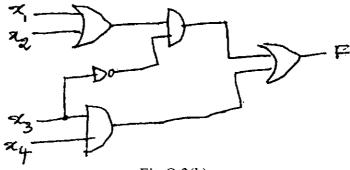


Fig.Q.3(b)

c. Given f(wxyz) = w'y' + y'z + wxz + xyz', generate a-tests and b-tests for multiple fault detection. (10 Marks)

4 a. Give the quadded realization of T = (AB + CD)(E + F).

(06 Marks)

b. List the capacities and limitations of finite state machines.

(04 Marks)

- c. Define the following:
 - i) Synchronous sequential machine
 - ii) Distinguishable states.
 - iii) K-distinguishable
 - iv) Equivalent states
 - v) Compatible states

vi) Cover or contain.

(06 Marks)

d. Give steps of Moore-Minimization procedure.

(04 Marks)

5 a. Find the minimal form of machine M1 and give both reduced form of the state table and standard form of state table of machine M1. Refer Table Q.5(a). (10 Marks)

	Machine M			
PS	NS, Z			
гэ	$\mathbf{x} = 0$	x = 1		
Α	E, 0	C, 0		
В	C, 0	A, 0		
C	B, 0	G, 0		
D	G, 0	A, 0		
Е	F, 1	B, 0		
F	E, 0	D, 0		
G	D, 0	G, 0		

 $\begin{array}{c|c} \text{Machine M2} \\ \hline \text{PS} & \text{NS, Z} \\ \hline x = 0 & \text{x} = 1 \\ \hline \text{A} & \text{A, 0} & \text{C, 0} \\ \hline \text{B} & \text{B, 0} & \text{B, -} \\ \hline \text{C} & \text{B, 0} & \text{A, 1} \\ \hline \end{array}$

Table Q.5(a)

Table Q.5(b)

- b. Find augmented machine and corresponding minimal machines of Table Q.5(b). Machine M2. (07 Marks)
- c. What do you mean by i) Maximal compatible; ii) Closed set; iii) Closed covering.

(03 Marks)

6 a. Explain merger graph. Write the merger graph for the machine M3 shown in Table Q.6(a), thus find the set of maximal compatibles. (10 Marks)

Table Q.6(a)
Machine M3

Tridelille 1715						
PS	NS, Z					
rs	11	I ₂	I_3	I ₄		
Α	-	C, 1	E, 1	B, 1		
В	E, 0	-	-	-		
C	F, 0	F, 1	-	-		
D	-	-	B, 1	-		
Е	-	F, 0	A, 0	D, 1		
F	C, 0	-	B, 0	C, 1		

- b. Define the following:
 - i) Closed partitions
 - ii) Output-consistent partition
 - iii) Input-consistent partition
 - iv) Autonomous clock
 - v) Closed implication graph
 - vi) Partition pair.

(06 Marks)

c. Write a note on Lattice of closed partions.

(04 Marks)

7 a. Construct the π - lattice of machine M4 given in Table Q.7(a).

(10 Marks)

Table Q.7(a)
Machine M4

Macinic ivi				
PS	NS			
гэ	x = 0	x = 1		
Α	Е	В		
В	Е	Α		
C	D	Α		
D	С	F		
Е	F	С		
F	Е	С		

b. Explain an application of states splitting to parallel decomposition with an example.

(10 Marks)

8 a. Define homing sequence and write the homing tree for the machine M5 given in Table Q.8(a) (10 Marks)

Table Q.8(a) Machine M5

PS	NS, Z			
гэ	x = 0	x = 1		
Α	B, 0	D, 0		
В	A, 0	B, 0		
C	D, 1	A, 0		
D	D, 1	C, 0		

- b. Describe the following:
 - i) Distinguishing experiments.
 - ii) Machine identification.

(10 Marks)

